moscot.problems.generic.SinkhornProblem.prepare#
- SinkhornProblem.prepare(key, joint_attr=None, policy='sequential', cost='sq_euclidean', cost_kwargs=mappingproxy({}), a=None, b=None, **kwargs)[source]#
Prepare the individual linear subproblems.
See also
See Custom cost matrices on how to pass custom cost matrices.
TODO(michalk8): add an example that shows how to pass different costs (with kwargs).
- Parameters:
key (
str
) – Key inobs
for theSubsetPolicy
.joint_attr (
Union
[str
,Mapping
[str
,Any
],None
]) –How to get the data for the linear term:
dict
- it should contain'attr'
and'key'
, the attribute and key inAnnData
, and optionally'tag'
from thetags
.
By default,
tag = 'point_cloud'
is used.policy (
Literal
['sequential'
,'explicit'
,'star'
]) –Rule which defines how to construct the subproblems using
obs['{key}']
. Valid options are:'sequential'
- align subsequent categories.'explicit'
- explicit sequence of subsets passed viasubset = [(b3, b0), ...]
.
cost (
Literal
['euclidean'
,'sq_euclidean'
,'cosine'
,'pnorm_p'
,'sq_pnorm'
,'elastic_l1'
,'elastic_l2'
,'elastic_stvs'
,'elastic_sqk_overlap'
]) –Cost function to use. Valid options are:
str
- name of the cost function, seeget_available_costs()
.dict
- a dictionary with the following keys and values:'xy'
- cost function for the linear term, same as above.
cost_kwargs (
Union
[Mapping
[str
,Any
],Mapping
[Literal
['x'
,'y'
,'xy'
],Mapping
[str
,Any
]]]) – Keyword arguments for theBaseCost
or any backend-specific cost.Source marginals. Valid options are:
Target marginals. Valid options are:
- Return type:
SinkhornProblem
[TypeVar
(K
, bound=Hashable
),TypeVar
(B
, bound=OTProblem
)]- Returns:
: Returns self and updates the following fields:
problems
- the prepared subproblems.stage
- set to'prepared'
.problem_kind
- set to'linear'
.