moscot.datasets.simulate_data¶
- moscot.datasets.simulate_data(n_distributions=2, cells_per_distribution=20, n_genes=60, key='batch', var=1.0, obs_to_add=mappingproxy({'celltype': 3}), marginals=None, seed=0, quad_term=None, lin_cost_matrix=None, quad_cost_matrix=None, **kwargs)[source]¶
Simulate data.
This function is used to generate data, mainly for the purpose of demonstrating certain functionalities of
moscot
.- Parameters:
n_distributions (
int
) – Number of distributions defined by key.cells_per_distribution (
int
) – Number of cells per distribution.n_genes (
int
) – Number of genes per simulated cell.key (
Literal
['day'
,'batch'
]) – Key to identify distribution allocation.var (
float
) – Variance of one cell distributionobs_to_add (
Mapping
[str
,Any
]) – Dictionary of names to add to columns ofanndata.AnnData.obs
and number of different values for this column.marginals (
Optional
[Tuple
[str
,str
]]) – Column names ofanndata.AnnData.obs
where to save the randomly generated marginals. If None, no marginals are generated.seed (
int
) – Random seed.quad_term (
Optional
[Literal
['tree'
,'barcode'
,'spatial'
]]) – Literal indicating whether to add costs corresponding to a specific problem setting. If None, no quadratic cost element is generated.lin_cost_matrix (
Optional
[str
]) – Key where to save the linear cost matrix. It is generated according to the pairwise policy. If None, no linear cost matrix is generated.quad_cost_matrix (
Optional
[str
]) – Key where to save the quadratic cost matrices. If None, no quadratic cost matrix is generated.kwargs (Any)
- Return type:
- Returns: