Source code for moscot.problems.space._mapping

import types
from typing import Any, Literal, Mapping, Optional, Sequence, Tuple, Type, Union

from anndata import AnnData

from moscot import _constants
from moscot._types import (
    ArrayLike,
    CostKwargs_t,
    OttCostFnMap_t,
    Policy_t,
    ProblemStage_t,
    QuadInitializer_t,
    ScaleCost_t,
)
from moscot.base.problems.compound_problem import B, CompoundProblem, K
from moscot.base.problems.problem import OTProblem
from moscot.problems._utils import handle_cost, handle_joint_attr
from moscot.problems.space._mixins import SpatialMappingMixin
from moscot.utils.subset_policy import DummyPolicy, ExternalStarPolicy

__all__ = ["MappingProblem"]


[docs] class MappingProblem(SpatialMappingMixin[K, OTProblem], CompoundProblem[K, OTProblem]): """Class for mapping single cell omics data onto spatial data, based on :cite:`nitzan:19`. Parameters ---------- adata_sc Annotated data object containing the single-cell data. adata_sp Annotated data object containing the spatial data. """ def __init__(self, adata_sc: AnnData, adata_sp: AnnData): super().__init__(adata_sp) self._adata_sc = adata_sc # TODO(michalk8): rename to common_vars? self.filtered_vars: Optional[Sequence[str]] = None def _create_policy( self, policy: Literal["external_star"] = "external_star", key: Optional[str] = None, **kwargs: Any, ) -> Union[DummyPolicy, ExternalStarPolicy[K]]: del policy if key is None: return DummyPolicy(self.adata, **kwargs) return ExternalStarPolicy(self.adata, key=key, **kwargs) def _create_problem( self, src: K, tgt: K, src_mask: ArrayLike, tgt_mask: ArrayLike, **kwargs: Any, ) -> OTProblem: return self._base_problem_type( adata=self.adata_sp, adata_tgt=self.adata_sc, src_obs_mask=src_mask, tgt_obs_mask=None, src_var_mask=self.filtered_vars, # type: ignore[arg-type] tgt_var_mask=self.filtered_vars, # type: ignore[arg-type] src_key=src, tgt_key=tgt, **kwargs, )
[docs] def prepare( self, sc_attr: Union[str, Mapping[str, Any]], batch_key: Optional[str] = None, spatial_key: Union[str, Mapping[str, Any]] = "spatial", var_names: Optional[Sequence[str]] = None, normalize_spatial: bool = True, joint_attr: Optional[Union[str, Mapping[str, Any]]] = None, cost: OttCostFnMap_t = "sq_euclidean", cost_kwargs: CostKwargs_t = types.MappingProxyType({}), a: Optional[str] = None, b: Optional[str] = None, **kwargs: Any, ) -> "MappingProblem[K]": """Prepare the mapping problem problem. .. seealso:: - See :doc:`../notebooks/tutorials/400_spatial_mapping` on how to prepare and solve the :class:`~moscot.problems.space.MappingProblem`. Parameters ---------- sc_attr How to get the data for the :term:`quadratic term`. Usually, it’s the :attr:`~anndata.AnnData.X` attribute, which contains normalized counts, but a different modality or a pre-computed `PCA <https://en.wikipedia.org/wiki/Principal_component_analysis>`_ can also be used. Valid options are: - :class:`str` - a key in :attr:`~anndata.AnnData.obsm`. - :class:`dict` - it should contain ``'attr'`` and ``'key'``, the attribute and key in :class:`~anndata.AnnData`, and optionally ``'tag'`` from the :class:`tags <moscot.utils.tagged_array.Tag>`. By default, :attr:`tag = 'point_cloud' <moscot.utils.tagged_array.Tag.POINT_CLOUD>` is used. batch_key Key in :attr:`~anndata.AnnData.obs` where the slices are stored. spatial_key Key in :attr:`~anndata.AnnData.obsm` where the spatial coordinates are stored. var_names Genes in :attr:`~anndata.AnnData.var_names` for the :term:`linear term` in the :term:`fused <fused Gromov-Wasserstein>` case. Valid options are: - :obj:`None` - use all genes shared between :attr:`adata_sp` and :attr:`adata_sc`. - :class:`~typing.Sequence` - use a subset of genes. If an empty sequence, the problem will correspond to the pure :term:`Gromov-Wasserstein` case. See also the ``joint_attribute`` parameter. normalize_spatial Whether to normalize the spatial coordinates. If :obj:`True`, the coordinates are normalized by standardizing them. joint_attr How to get the data for the :term:`linear term` in the :term:`fused <fused Gromov-Wasserstein>` case: - :obj:`None` - `PCA <https://en.wikipedia.org/wiki/Principal_component_analysis>`_ on :attr:`~anndata.AnnData.X` is computed. - :class:`str` - key in :attr:`~anndata.AnnData.obsm` where the data is stored. - :class:`dict` - it should contain ``'attr'`` and ``'key'``, the attribute and key in :class:`~anndata.AnnData`, and optionally ``'tag'`` from the :class:`tags <moscot.utils.tagged_array.Tag>`. cost Cost function to use. Valid options are: - :class:`str` - name of the cost function for all terms, see :func:`~moscot.costs.get_available_costs`. - :class:`dict` - a dictionary with the following keys and values: - ``'xy'`` - cost function for the :term:`linear term`. - ``'x'`` - cost function for the source :term:`quadratic term`. - ``'y'`` - cost function for the target :term:`quadratic term`. cost_kwargs Keyword arguments for the :class:`~moscot.base.cost.BaseCost` or any backend-specific cost. a Source :term:`marginals`. Valid options are: - :class:`str` - key in :attr:`~anndata.AnnData.obs` where the source marginals are stored. - :class:`bool` - if :obj:`True`, :meth:`estimate the marginals <moscot.base.problems.OTProblem.estimate_marginals>`, otherwise use uniform marginals. - :obj:`None` - uniform marginals. b Target :term:`marginals`. Valid options are: - :class:`str` - key in :attr:`~anndata.AnnData.obs` where the target marginals are stored. - :class:`bool` - if :obj:`True`, :meth:`estimate the marginals <moscot.base.problems.OTProblem.estimate_marginals>`, otherwise use uniform marginals. - :obj:`None` - uniform marginals. kwargs Keyword arguments for :meth:`~moscot.base.problems.CompoundProblem.prepare`. Returns ------- Returns self and updates the following fields: - :attr:`problems` - the prepared subproblems. - :attr:`solutions` - set to an empty :class:`dict`. - :attr:`spatial_key` - key in :attr:`~anndata.AnnData.obsm` where the spatial coordinates are stored. - :attr:`batch_key` - key in :attr:`~anndata.AnnData.obs` where batches are stored. - :attr:`stage` - set to ``'prepared'``. - :attr:`problem_kind` - set to ``'quadratic'``. """ x = {"attr": "obsm", "key": spatial_key} if isinstance(spatial_key, str) else spatial_key y = {"attr": "obsm", "key": sc_attr} if isinstance(sc_attr, str) else sc_attr if normalize_spatial and "x_callback" not in kwargs: kwargs["x_callback"] = "spatial-norm" kwargs.setdefault("x_callback_kwargs", x) if "spatial-norm" in kwargs.get("x_callback", {}): x = {} self.batch_key = batch_key self.spatial_key = spatial_key if isinstance(spatial_key, str) else spatial_key["key"] self.filtered_vars = var_names if self.filtered_vars is not None: xy, kwargs = handle_joint_attr(joint_attr, kwargs) else: xy = {} xy, x, y = handle_cost(xy=xy, x=x, y=y, cost=cost, cost_kwargs=cost_kwargs, **kwargs) # type: ignore[arg-type] if xy: kwargs["xy"] = xy return super().prepare( # type: ignore[return-value] x=x, y=y, policy="external_star", key=batch_key, cost=cost, a=a, b=b, **kwargs )
[docs] def solve( self, alpha: float = 0.5, epsilon: float = 1e-2, tau_a: float = 1.0, tau_b: float = 1.0, rank: int = -1, scale_cost: ScaleCost_t = "mean", batch_size: Optional[int] = None, stage: Union[ProblemStage_t, Tuple[ProblemStage_t, ...]] = ("prepared", "solved"), initializer: QuadInitializer_t = None, initializer_kwargs: Mapping[str, Any] = types.MappingProxyType({}), jit: bool = True, min_iterations: int = 5, max_iterations: int = 50, threshold: float = 1e-3, linear_solver_kwargs: Mapping[str, Any] = types.MappingProxyType({}), device: Optional[Literal["cpu", "gpu", "tpu"]] = None, **kwargs: Any, ) -> "MappingProblem[K]": r"""Solve the mapping problem. .. seealso:: - See :doc:`../notebooks/tutorials/400_spatial_mapping` on how to prepare and solve the :class:`~moscot.problems.space.MappingProblem`. Parameters ---------- alpha Parameter in :math:`(0, 1]` that interpolates between the :term:`quadratic term` and the :term:`linear term`. :math:`\alpha = 1` corresponds to the pure :term:`Gromov-Wasserstein` problem while :math:`\alpha \to 0` corresponds to the pure :term:`linear problem`. epsilon :term:`Entropic regularization`. tau_a Parameter in :math:`(0, 1]` that defines how much :term:`unbalanced <unbalanced OT problem>` is the problem on the source :term:`marginals`. If :math:`1`, the problem is :term:`balanced <balanced OT problem>`. tau_b Parameter in :math:`(0, 1]` that defines how much :term:`unbalanced <unbalanced OT problem>` is the problem on the target :term:`marginals`. If :math:`1`, the problem is :term:`balanced <balanced OT problem>`. rank Rank of the :term:`low-rank OT` solver :cite:`scetbon:21b`. If :math:`-1`, full-rank solver :cite:`peyre:2016` is used. scale_cost How to re-scale the cost matrices. If a :class:`float`, the cost matrices will be re-scaled as :math:`\frac{\text{cost}}{\text{scale_cost}}`. batch_size Number of rows/columns of the cost matrix to materialize during the solver iterations. Larger value will require more memory. stage Stage by which to filter the :attr:`problems` to be solved. initializer How to initialize the solution. If :obj:`None`, ``'default'`` will be used for a full-rank solver and ``'rank2'`` for a low-rank solver. initializer_kwargs Keyword arguments for the ``initializer``. jit Whether to :func:`~jax.jit` the underlying :mod:`ott` solver. min_iterations Minimum number of :term:`(fused) GW <Gromov-Wasserstein>` iterations. max_iterations Maximum number of :term:`(fused) GW <Gromov-Wasserstein>` iterations. threshold Convergence threshold of the :term:`GW <Gromov-Wasserstein>` solver. linear_solver_kwargs Keyword arguments for the inner :term:`linear problem` solver. device Transfer the solution to a different device, see :meth:`~moscot.base.output.BaseSolverOutput.to`. If :obj:`None`, keep the output on the original device. kwargs Keyword arguments for :meth:`~moscot.base.problems.CompoundProblem.solve`. Returns ------- Returns self and updates the following fields: - :attr:`solutions` - the :term:`OT` solutions for each subproblem. - :attr:`stage` - set to ``'solved'``. """ return super().solve( # type: ignore[return-value] alpha=alpha, epsilon=epsilon, tau_a=tau_a, tau_b=tau_b, rank=rank, scale_cost=scale_cost, batch_size=batch_size, stage=stage, initializer=initializer, initializer_kwargs=initializer_kwargs, jit=jit, min_iterations=min_iterations, max_iterations=max_iterations, threshold=threshold, linear_solver_kwargs=linear_solver_kwargs, device=device, **kwargs, )
@property def adata_sc(self) -> AnnData: """Single-cell data.""" return self._adata_sc @property def adata_sp(self) -> AnnData: """Spatial data, alias for :attr:`adata`.""" return self.adata @property def filtered_vars(self) -> Optional[Sequence[str]]: """Filtered variables.""" return self._filtered_vars @filtered_vars.setter def filtered_vars(self, value: Optional[Sequence[str]]) -> None: self._filtered_vars = self._filter_vars(var_names=value) # type: ignore[misc] @property def _base_problem_type(self) -> Type[B]: return OTProblem # type: ignore[return-value] @property def _valid_policies(self) -> Tuple[Policy_t, ...]: return _constants.EXTERNAL_STAR, _constants.DUMMY # type: ignore[return-value]