import types
from typing import Any, Literal, Mapping, Optional, Sequence, Tuple, Type, Union
from ott.geometry import epsilon_scheduler
from anndata import AnnData
from moscot import _constants
from moscot._types import (
CostKwargs_t,
Numeric_t,
OttCostFnMap_t,
Policy_t,
ProblemStage_t,
QuadInitializer_t,
ScaleCost_t,
)
from moscot.base.problems.birth_death import BirthDeathMixin, BirthDeathProblem
from moscot.base.problems.compound_problem import B, Callback_t
from moscot.problems.space import AlignmentProblem, SpatialAlignmentMixin
from moscot.problems.time import TemporalMixin
__all__ = ["SpatioTemporalProblem"]
[docs]
class SpatioTemporalProblem( # type: ignore[misc]
TemporalMixin[Numeric_t, BirthDeathProblem],
BirthDeathMixin,
AlignmentProblem[Numeric_t, BirthDeathProblem],
SpatialAlignmentMixin[Numeric_t, BirthDeathProblem],
):
"""Class for analyzing time series spatial single-cell data.
Parameters
----------
adata
Annotated data object.
kwargs
Keyword arguments for :class:`~moscot.base.problems.CompoundProblem`.
"""
def __init__(self, adata: AnnData, **kwargs: Any):
super().__init__(adata, **kwargs)
[docs]
def prepare(
self,
time_key: str,
spatial_key: str = "spatial",
joint_attr: Optional[Union[str, Mapping[str, Any]]] = None,
normalize_spatial: bool = True,
policy: Literal["sequential", "triu", "tril", "explicit"] = "sequential",
cost: OttCostFnMap_t = "sq_euclidean",
cost_kwargs: CostKwargs_t = types.MappingProxyType({}),
a: Optional[Union[bool, str]] = None,
b: Optional[Union[bool, str]] = None,
marginal_kwargs: Mapping[str, Any] = types.MappingProxyType({}),
subset: Optional[Sequence[Tuple[Numeric_t, Numeric_t]]] = None,
xy_callback: Optional[Union[Literal["local-pca"], Callback_t]] = None,
x_callback: Optional[Union[Literal["local-pca"], Callback_t]] = None,
y_callback: Optional[Union[Literal["local-pca"], Callback_t]] = None,
xy_callback_kwargs: Mapping[str, Any] = types.MappingProxyType({}),
x_callback_kwargs: Mapping[str, Any] = types.MappingProxyType({}),
y_callback_kwargs: Mapping[str, Any] = types.MappingProxyType({}),
) -> "SpatioTemporalProblem":
"""Prepare the spatiotemporal problem problem.
.. seealso::
- See :doc:`../notebooks/tutorials/500_spatiotemporal` on how to
prepare and solve the :class:`~moscot.problems.spatiotemporal.SpatioTemporalProblem`.
- See :doc:`../notebooks/examples/problems/800_score_genes_for_marginals` on how to
:meth:`score genes for proliferation and apoptosis <score_genes_for_marginals>`.
Parameters
----------
time_key
Key in :attr:`~anndata.AnnData.obs` where the time points are stored.
spatial_key
Key in :attr:`~anndata.AnnData.obsm` where the spatial coordinates are stored.
joint_attr
How to get the data for the :term:`linear term` in the :term:`fused <fused Gromov-Wasserstein>` case:
- :obj:`None` - `PCA <https://en.wikipedia.org/wiki/Principal_component_analysis>`_
on :attr:`~anndata.AnnData.X` is computed.
- :class:`str` - key in :attr:`~anndata.AnnData.obsm` where the data is stored.
- :class:`dict` - it should contain ``'attr'`` and ``'key'``, the attribute and key in
:class:`~anndata.AnnData`, and optionally ``'tag'`` from the
:class:`tags <moscot.utils.tagged_array.Tag>`.
By default, :attr:`tag = 'point_cloud' <moscot.utils.tagged_array.Tag.POINT_CLOUD>` is used.
normalize_spatial
Whether to normalize the spatial coordinates. If :obj:`True`, the coordinates are normalized
by standardizing them.
policy
Rule which defines how to construct the subproblems using :attr:`obs['{time_key}'] <anndata.AnnData.obs>`.
Valid options are:
- ``'sequential'`` - align subsequent time points ``[(t0, t1), (t1, t2), ...]``.
- ``'triu'`` - upper triangular matrix ``[(t0, t1), (t0, t2), ..., (t1, t2), ...]``.
- ``'tril'`` - lower triangular matrix ``[(t_n, t_n-1), (t_n, t0), ..., (t_n-1, t_n-2), ...]``.
- ``'explicit'`` - explicit sequence of subsets passed via ``subset = [(b3, b0), ...]``.
cost
Cost function to use. Valid options are:
- :class:`str` - name of the cost function for all terms, see :func:`~moscot.costs.get_available_costs`.
- :class:`dict` - a dictionary with the following keys and values:
- ``'xy'`` - cost function for the :term:`linear term`.
- ``'x'`` - cost function for the source :term:`quadratic term`.
- ``'y'`` - cost function for the target :term:`quadratic term`.
cost_kwargs
Keyword arguments for the :class:`~moscot.base.cost.BaseCost` or any backend-specific cost.
a
Source :term:`marginals`. Valid options are:
- :class:`str` - key in :attr:`~anndata.AnnData.obs` where the source marginals are stored.
- :class:`bool` - if :obj:`True`,
:meth:`estimate the marginals <moscot.base.problems.BirthDeathProblem.estimate_marginals>`,
otherwise use uniform marginals.
- :obj:`None` - set to :obj:`True` if :attr:`proliferation_key` or :attr:`apoptosis_key` is not :obj:`None`.
b
Target :term:`marginals`. Valid options are:
- :class:`str` - key in :attr:`~anndata.AnnData.obs` where the target marginals are stored.
- :class:`bool` - if :obj:`True`,
:meth:`estimate the marginals <moscot.base.problems.BirthDeathProblem.estimate_marginals>`,
otherwise use uniform marginals.
- :obj:`None` - set to :obj:`True` if :attr:`proliferation_key` or :attr:`apoptosis_key` is not :obj:`None`.
marginal_kwargs
Keyword arguments for :meth:`~moscot.base.problems.BirthDeathProblem.estimate_marginals`.
It always contains :attr:`proliferation_key` and :attr:`apoptosis_key`,
see :meth:`score_genes_for_marginals` for more information.
Returns
-------
Returns self and updates the following fields:
- :attr:`problems` - the prepared subproblems.
- :attr:`solutions` - set to an empty :class:`dict`.
- :attr:`spatial_key` - key in :attr:`~anndata.AnnData.obsm` where spatial coordinates are stored.
- :attr:`temporal_key` - key in :attr:`~anndata.AnnData.obs` where time points are stored.
- :attr:`stage` - set to ``'prepared'``.
- :attr:`problem_kind` - set to ``'quadratic'``.
"""
# spatial key set in AlignmentProblem
# handle_joint_attr and handle_cost in AlignmentProblem
self.temporal_key = time_key
marginal_kwargs = dict(marginal_kwargs)
estimate_marginals = self.proliferation_key is not None or self.apoptosis_key is not None
a = estimate_marginals if a is None else a
b = estimate_marginals if b is None else b
if self.apoptosis_key is not None:
marginal_kwargs["apoptosis_key"] = self.apoptosis_key
if self.proliferation_key is not None:
marginal_kwargs["proliferation_key"] = self.proliferation_key
return super().prepare( # type: ignore[return-value]
spatial_key=spatial_key,
batch_key=time_key,
joint_attr=joint_attr,
normalize_spatial=normalize_spatial,
policy=policy, # type: ignore[arg-type]
reference=None,
cost=cost,
cost_kwargs=cost_kwargs,
a=a,
b=b,
marginal_kwargs=marginal_kwargs,
subset=subset,
x_callback=x_callback,
y_callback=y_callback,
xy_callback=xy_callback,
x_callback_kwargs=x_callback_kwargs,
y_callback_kwargs=y_callback_kwargs,
xy_callback_kwargs=xy_callback_kwargs,
)
[docs]
def solve(
self,
alpha: float = 0.5,
epsilon: Union[float, epsilon_scheduler.Epsilon] = 1e-3,
tau_a: float = 1.0,
tau_b: float = 1.0,
rank: int = -1,
scale_cost: ScaleCost_t = "mean",
batch_size: Optional[int] = None,
stage: Union[ProblemStage_t, Tuple[ProblemStage_t, ...]] = ("prepared", "solved"),
initializer: QuadInitializer_t = None,
initializer_kwargs: Mapping[str, Any] = types.MappingProxyType({}),
jit: bool = True,
min_iterations: Optional[int] = None,
max_iterations: Optional[int] = None,
threshold: float = 1e-3,
linear_solver_kwargs: Mapping[str, Any] = types.MappingProxyType({}),
device: Optional[Literal["cpu", "gpu", "tpu"]] = None,
**kwargs: Any,
) -> "SpatioTemporalProblem":
r"""Solve the spatiotemporal problem.
.. seealso::
- See :doc:`../notebooks/tutorials/500_spatiotemporal` on how to
prepare and solve the :class:`~moscot.problems.spatiotemporal.SpatioTemporalProblem`.
Parameters
----------
alpha
Parameter in :math:`(0, 1]` that interpolates between the :term:`quadratic term` and
the :term:`linear term`. :math:`\alpha = 1` corresponds to the pure :term:`Gromov-Wasserstein` problem while
:math:`\alpha \to 0` corresponds to the pure :term:`linear problem`.
epsilon
:term:`Entropic regularization`.
tau_a
Parameter in :math:`(0, 1]` that defines how much :term:`unbalanced <unbalanced OT problem>` is the problem
on the source :term:`marginals`. If :math:`1`, the problem is :term:`balanced <balanced OT problem>`.
tau_b
Parameter in :math:`(0, 1]` that defines how much :term:`unbalanced <unbalanced OT problem>` is the problem
on the target :term:`marginals`. If :math:`1`, the problem is :term:`balanced <balanced OT problem>`.
rank
Rank of the :term:`low-rank OT` solver :cite:`scetbon:21b`.
If :math:`-1`, full-rank solver :cite:`peyre:2016` is used.
scale_cost
How to re-scale the cost matrices. If a :class:`float`, the cost matrices
will be re-scaled as :math:`\frac{\text{cost}}{\text{scale_cost}}`.
batch_size
Number of rows/columns of the cost matrix to materialize during the solver iterations.
Larger value will require more memory.
stage
Stage by which to filter the :attr:`problems` to be solved.
initializer
How to initialize the solution. If :obj:`None`, ``'default'`` will be used for a full-rank solver and
``'rank2'`` for a low-rank solver.
initializer_kwargs
Keyword arguments for the ``initializer``.
jit
Whether to :func:`~jax.jit` the underlying :mod:`ott` solver.
min_iterations
Minimum number of :term:`(fused) GW <Gromov-Wasserstein>` iterations.
max_iterations
Maximum number of :term:`(fused) GW <Gromov-Wasserstein>` iterations.
threshold
Convergence threshold of the :term:`GW <Gromov-Wasserstein>` solver.
linear_solver_kwargs
Keyword arguments for the inner :term:`linear problem` solver.
device
Transfer the solution to a different device, see :meth:`~moscot.base.output.BaseDiscreteSolverOutput.to`.
If :obj:`None`, keep the output on the original device.
kwargs
Keyword arguments for :meth:`~moscot.problems.space.AlignmentProblem.solve`.
Returns
-------
Returns self and updates the following fields:
- :attr:`solutions` - the :term:`OT` solutions for each subproblem.
- :attr:`stage` - set to ``'solved'``.
"""
# TODO(michalk8): use locals (and in other places)
return super().solve( # type: ignore[return-value]
alpha=alpha,
epsilon=epsilon,
tau_a=tau_a,
tau_b=tau_b,
rank=rank,
scale_cost=scale_cost,
batch_size=batch_size,
stage=stage,
initializer=initializer,
initializer_kwargs=initializer_kwargs,
jit=jit,
min_iterations=min_iterations,
max_iterations=max_iterations,
threshold=threshold,
linear_solver_kwargs=linear_solver_kwargs,
device=device,
**kwargs,
)
@property
def _valid_policies(self) -> Tuple[Policy_t, ...]:
return (
_constants.SEQUENTIAL,
_constants.TRIL,
_constants.TRIU,
_constants.EXPLICIT,
) # type: ignore[return-value]
@property
def _base_problem_type(self) -> Type[B]:
return BirthDeathProblem # type: ignore[return-value]